• BACKGROUND
    • There has been little enthusiasm for somatosensory evoked potential monitoring in cervical spine surgery as a result, in part, of the increased risk of motor tract injury at this level, to which somatosensory monitoring may be insensitive. Transcranial electric motor evoked potential monitoring allows assessment of the motor tracts; therefore, we compared transcranial electric motor evoked potential and somatosensory evoked potential monitoring during cervical spine surgery to determine the temporal relationship between the changes in the potentials demonstrated by each type of monitoring and neurological sequelae and to identify patient-related and surgical factors associated with intraoperative neurophysiological changes.
  • METHODS
    • Somatosensory evoked potential and transcranial electric motor evoked potential data recorded for 427 patients undergoing anterior or posterior cervical spine surgery between January 1999 and March 2001 were analyzed. All patients who showed substantial (at least 60%) or complete unilateral or bilateral amplitude loss, for at least ten minutes, during the transcranial electric motor evoked potential and/or somatosensory evoked potential monitoring were identified.
  • RESULTS
    • Twelve of the 427 patients demonstrated substantial or complete loss of amplitude of the transcranial electric motor evoked potentials. Ten of those patients had complete reversal of the loss following prompt intraoperative intervention, whereas two awoke with a new motor deficit. Somatosensory evoked potential monitoring failed to identify any change in one of the two patients, and the change in the somatosensory evoked potentials lagged behind the change in the transcranial electric motor evoked potentials by thirty-three minutes in the other. No patient showed loss of amplitude of the somatosensory evoked potentials in the absence of changes in the transcranial electric motor evoked potentials. Transcranial electric motor evoked potential monitoring was 100% sensitive and 100% specific, whereas somatosensory evoked potential monitoring was only 25% sensitive; it was, however, 100% specific.
  • CONCLUSIONS
    • Transcranial electric motor evoked potential monitoring appears to be superior to conventional somatosensory evoked potential monitoring for identifying evolving motor tract injury during cervical spine surgery. Surgeons should strongly consider using this modality when operating on patients with cervical spondylotic myelopathy in general and on those with ossification of the posterior longitudinal ligament in particular.