• ABSTRACT
    • This study aimed to describe the intraosseous blood supply of the distal radius and its clinical implications in distal radius fractures. Twelve adult wrists from fresh cadavers (six males, six females, 50-90 years of age, mean 68 years) were injected through the brachial artery with latex. Dissections were performed using magnifying loupes and hands were processed using the Spalteholz technique. The distal radius was supplied by three main vascular systems: epiphyseal, metaphyseal, and diaphyseal. The palmar epiphyseal vessels branched from the radial artery, palmar carpal arch, and anterior branch of the anterior interosseous artery. These vessels entered the bone through the radial styloid process at level of the Lister's tubercle but palmar and sigmoid notch. The dorsal contribution to Lister's tubercle is to the dorsal epiphyseal vessels. The intraosseous point of entry to the dorsal epiphyseal vessels was from the fourth and fifth extensor compartment arteries. In the metaphyseal area, we found numerous periosteal and cortical branches originating deep in the pronator quadratus and the anterior interosseous artery. These branches provided the main supply to the distal radius. Vessels perforated the bone and formed an anastomotic network. In the diaphyseal area, only the nutrient vessel provided intraosseous vascularity in the distal radius. Numerous metaphyseal-epiphyseal branches arise within the pronator quadratus and the anterior interosseous artery and course towards the distal radius. These branches may be fundamental to the healing of the distal radius fractures and make nonunion a rare complication.