• ABSTRACT
    • Most locked plating failures are due to inappropriate device configuration for the fracture pattern. Several studies cite screw positioning variables such as the number and spacing of screws as responsible for occurrences of locking plate breakage, screw loosening, and peri-prosthetic re-fracture. It is also widely accepted that inappropriate device stiffness can inhibit or delay healing. Careful preoperative planning is therefore critical if these failures are to be prevented. This study examines several variables which need to be considered when optimising a locking plate fixation device for fracture treatment including: material selection; screw placement; the effect of the fracture pattern; and the bone-plate offset. We demonstrate that device selection is not straight-forward as many of the variables influence one-another and an identically configured device can perform very differently depending upon the fracture pattern. Finally, we summarise the influence of some of the key parameters and the influence this can have on the fracture healing environment and the stresses within the plate in a flowchart.