• BACKGROUND
    • As advanced technology continues to evolve, incorporating robotics into surgical procedures has become imperative for precision and accuracy in preoperative planning. Nevertheless, the integration of three-dimensional (3D) imaging into these processes presents both financial considerations and potential patient safety concerns. This study aims to assess the accuracy of a novel 2D-to-3D knee reconstruction solution, RSIP XPlan.ai™ (RSIP Vision, Jerusalem, Israel), on preoperative total knee arthroplasty (TKA) patient anatomies.
  • METHODS
    • Accuracy was calculated by measuring the Root Mean Square Error (RMSE) between X-ray-based 3D bone models generated by the algorithm and corresponding CT bone segmentations (distances of each mesh vertex to the closest vertex in the second mesh). The RMSE was computed globally for each bone, locally for eight clinically relevant bony landmark regions, and along simulated bone cut contours. In addition, the accuracies of three anatomical axes were assessed by comparing angular deviations to inter- and intra-observer baseline values.
  • RESULTS
    • The global RMSE was 0.93 ± 0.25 mm for the femur and 0.88 ± 0.14 mm for the tibia. Local RMSE values for bony landmark regions were 0.51 ± 0.33 mm for the five femoral landmarks and 0.47 ± 0.17 mm for the three tibial landmarks. The RMSE along simulated cut contours was 0.75 ± 0.35 mm for the distal femur cut and 0.63 ± 0.27 mm for the proximal tibial cut. Anatomical axial average angular deviations were 1.89° for the trans epicondylar axis (with an inter- and intra-observer baseline of 1.43°), 1.78° for the posterior condylar axis (with a baseline of 1.71°), and 2.82° (with a baseline of 2.56°) for the medial-lateral transverse axis.
  • CONCLUSIONS
    • The study findings demonstrate promising results regarding the accuracy of XPlan.ai™ in reconstructing 3D bone models from plain-film X-rays. The observed accuracy on real-world TKA patient anatomies in anatomically relevant regions, including bony landmarks, cut contours, and axes, suggests the potential utility of this method in various clinical scenarios. Further validation studies on larger cohorts are warranted to fully assess the reliability and generalizability of our results. Nonetheless, our findings lay the groundwork for potential advancements in future robotic arthroplasty technologies, with XPlan.ai™ offering a promising alternative to conventional CT scans in certain clinical contexts.