• BACKGROUND
    • Joint arthroplasty registries usually lack information on medical imaging owing to the laborious process of observing and recording, as well as the lack of standard methods to transfer the imaging information to the registries, which can limit the investigation of various research questions. Artificial intelligence (AI) algorithms can automate imaging-feature identification with high accuracy and efficiency. With the purpose of enriching shoulder arthroplasty registries with organized imaging information, it was hypothesized that an automated AI algorithm could be developed to classify and organize preoperative and postoperative radiographs from shoulder arthroplasty patients according to laterality, radiographic projection, and implant type.
  • METHODS
    • This study used a cohort of 2303 shoulder radiographs from 1724 shoulder arthroplasty patients. Two observers manually labeled all radiographs according to (1) laterality (left or right), (2) projection (anteroposterior, axillary, or lateral), and (3) whether the radiograph was a preoperative radiograph or showed an anatomic total shoulder arthroplasty or a reverse shoulder arthroplasty. All these labeled radiographs were randomly split into developmental and testing sets at the patient level and based on stratification. By use of 10-fold cross-validation, a 3-task deep-learning algorithm was trained on the developmental set to classify the 3 aforementioned characteristics. The trained algorithm was then evaluated on the testing set using quantitative metrics and visual evaluation techniques.
  • RESULTS
    • The trained algorithm perfectly classified laterality (F1 scores [harmonic mean values of precision and sensitivity] of 100% on the testing set). When classifying the imaging projection, the algorithm achieved F1 scores of 99.2%, 100%, and 100% on anteroposterior, axillary, and lateral views, respectively. When classifying the implant type, the model achieved F1 scores of 100%, 95.2%, and 100% on preoperative radiographs, anatomic total shoulder arthroplasty radiographs, and reverse shoulder arthroplasty radiographs, respectively. Visual evaluation using integrated maps showed that the algorithm focused on the relevant patient body and prosthesis parts for classification. It took the algorithm 20.3 seconds to analyze 502 images.
  • CONCLUSIONS
    • We developed an efficient, accurate, and reliable AI algorithm to automatically identify key imaging features of laterality, imaging view, and implant type in shoulder radiographs. This algorithm represents the first step to automatically classify and organize shoulder radiographs on a large scale in very little time, which will profoundly enrich shoulder arthroplasty registries.