• ABSTRACT
    • The author describes application of intraoperative neurophysiologic monitoring to surgical treatment of lumbar stenosis. Benefits of somatosensory and motor evoked potential studies during surgical correction of spinal deformity are well known and documented. Free-running and evoked electromyographic studies during pedicle screw implantation is an accepted practice at many institutions. However, the functional integrity of spinal cord, cauda equina, and nerve roots should be monitored throughout every stage of surgery including exposure and decompression. Somatosensory evoked potentials monitor overall spinal cord function. Intraoperative electromyography provides continuous assessment of motor root function in response to direct and indirect surgical manipulation. Electromyographic activities observed during exposure and decompression of the lumbosacral spine included complex patterns of bursting and neurotonic discharge. In addition, electromyographic activities at distal musculature were elicited by impacting a surgical instrument or graft plug against bony elements of the spine. All electromyographic events provided direct feedback to the surgical team and were regarded as a cause for concern. Simultaneously monitored evoked potential and electromyographic studies protect spinal cord and nerve roots during seemingly low-risk phases of a surgical procedure when neurologic injury may occur and the patient is placed at risk for postoperative myelopathy or radiculopathy.