• ABSTRACT
    • Magnetic resonance imaging provides excellent anatomic detail of spinal tissues, but fails to provide the type of information that permits a definitive diagnosis in many patients with back pain. New imaging strategies that can be applied to the study of intervertebral disc degeneration include diffusion-weighted imaging, magnetic resonance imaging, diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, dynamic computed tomography and magnetic resonance imaging, and T2 relaxometry. With dynamic imaging, the relative motions of normal and degenerated lumbar motion segments can be evaluated noninvasively. With further evaluation of the technique, hypermobile segments may be distinguishable from those with normal relative motion. T2 measurements obtained by T2 relaxometry appear to have important advantages with regard to spinal imaging because this modality provides a continuous and objective measure of the content of free water in the disc, which decreases with aging and degeneration. Anatomic imaging of the spine is highly accurate in the evaluation of nonmechanical causes of back pain and less beneficial in the evaluation of back pain that is due to mechanical causes. The development of functional imaging strategies of the spine will likely improve the management of patients with back pain. This article outlines the current magnetic resonance imaging protocols for intervertebral disc degeneration, indicates deficiencies in current imaging, and describes functional imaging strategies for the spine that will likely improve the evaluation of patients with back pain. It also reviews recent published articles on magnetic resonance imaging and computed tomographic imaging of the spine and details the results of studies that have explored the future potential of spine imaging.