• ABSTRACT
    • The expression of inflammatory cytokines and growth factors in surgically repaired lacerated muscles over a 12-week recovery phase was investigated. We hypothesized that these expression levels are influenced by both neural and muscular damage within lacerated muscles. Microarrays were confirmed with reverse transcription-polymerase chain reaction assays and histology of biopsies at the lesion of three simulated lacerated muscle models in 130 adult rats. The lacerated medial gastrocnemius with the main intramuscular nerve branch either cut (DN), crushed but leaving an intact nerve sheath (RN); or preserved intact (PN) were compared. At 4 weeks, DN had a higher number of interleukins up-regulated. DN and RN also had a set of Bmp genes significantly expressed between 2 and 8 weeks (P ≤ 0.05). By 12 weeks, DN had a poorer and slower myogenic recovery and greater fibrosis formation correlating with an up-regulation of the Tgf-β gene family. DN also showed poorer re-innervation with higher mRNA expression levels of nerve growth factor (Ngf) and brain-derived neurotrophin growth factor (Bdnf) over RN and PN. This study demonstrates that the inflammatory response over 12 weeks in lacerated muscles may be directed by the type of intramuscular nerve damage, which can influence the recovery at the lesion site. Inflammatory-related genes associated to the type of intramuscular nerve damage include Gas-6, Artemin, Fgf10, Gdf8, Cntf, Lif, and Igf-2. qPCR also found up-regulation of Bdnf (1-week), neurotrophin-3 (2w), Lif (4w), and Ngf (4w, 8w) mRNA expressions in DN, making them possible candidates for therapeutic treatment to arrest the poor recovery in muscle lacerations (250).