• ABSTRACT
    • OBJECT Low bone mineral density in patients undergoing lumbar spinal surgery with screws is an especially difficult challenge because poor bone quality can severely compromise the maximum achievable purchase of the screws. A relatively new technique, the cortical bone screw trajectory, utilizes a medialized trajectory in the caudocephalad direction to engage a greater amount of cortical bone within the pars interarticularis and pedicle. The objectives of this cadaveric biomechanical study were to 1) evaluate a cortical screw system and compare its mechanical performance to the traditional pedicle screw system; 2) determine differences in bone quality associated with the cortical screw trajectory versus the normal pedicle screw insertion technique; 3) determine the cortical wall breach rate with both the cortical and traditional screw trajectories; and 4) determine the performance of the traditional screw in the cortical screw trajectory. METHODS Fourteen fresh frozen human lumbar spine sections (L1-5) were used in this study (mean age 57 ± 19 years). The experimental plan involved drilling and tapping screw holes for 2 trajectories under navigation (a traditional pedicle screw and a cortical screw) in both high-and low-quality vertebrae, measuring the bone quality associated with these trajectories, placing screws in the trajectories, and evaluating the competence of the screw purchase via 2 mechanical tests (pullout and toggle). The 3 experimental variants were 1) traditional pedicle screws placed in the traditional pedicle screw trajectory, 2) traditional pedicle screws placed in the cortical screw trajectory, and 3) cortical screws placed in the cortical screw trajectory. RESULTS A statistically significant increase in bone quality was observed for the cortical trajectories with a cortical screw (42%; p < 0.001) and traditional pedicle screw (48%; p < 0.001) when compared to the traditional trajectory with a traditional pedicle screw within the high-quality bone group. These significant differences were also found in the lowquality bone cohort. All mechanical parameter comparisons (screw type and trajectory) between high-quality and lowquality samples were significant (p < 0.01), and these data were all linearly correlated (r ≥ 0.65) to bone mineral density. Not all mechanical parameters determined from pullout and toggle testing were statistically significant between the 3 screw/trajectory combinations. The incidence of cortical wall breach with the cortical or traditional pedicle screw trajectories was not significantly different. CONCLUSIONS The data demonstrated that the cortical trajectory provides denser bone that allows for utilization of smaller screws to obtain mechanical purchase that is equivalent to long pedicle screws placed in traditional pedicle screw trajectories for both normal- and low-quality bone. Overall, this biomechanical study in cadavers provides evidence that the cortical screw trajectory represents a good option to obtain fixation for the lumbar spine with low-quality bone.