• ABSTRACT
    • Dyes are an important resource employed for the production systems in textile, paper, paint and leather industry. An estimate of 200,000 tons of dyes are discharged as textile effluent each year worldwide. It becomes imperative to recover these dyes by treating the effluents using economically viable routes. The present research was undertaken with the objective to attain zero emission and zero waste through development of novel polymeric hybrids as adsorbents. For this purpose, metal moieties (Al3+, Si4+, Ti4+ and Zr4+) were hybridized with polyacrylic acid, and cellulose acetate for the uptake of selected dyes under optimized parameters. The structural elucidation of four synthesized hybrids (MP-Al, MP-Si, MP-Ti and MP-Zr) by FTIR, EDX and TGA confirmed O-linked grafting of metal moieties with polymers and thermally stable porous materials. SEM micrographic images displayed void spaces providing channels for effective adsorption. The batch experiments demonstrated removal of malachite green (77-96%) and congo red (70-82%) upon contact of initial 45 min on polymeric hybrids On the other hand, pristine polyacrylic acid and cellulose acetate showed remarkably low removal of dyes. The adsorption mechanism is proposed as physical in nature following type II isotherm. Further, Langmuir and Ho's pseudo second order fitness was evaluated. In order to determine the economic viability of the present research, the real textile dyes were recovered in three consecutive cycles of adsorption and chemical treatment of hybrids. The results propose a system with positive impact on economy by maximum utilization of hybrids as adsorbents and recovery of textile dyes for reuse in textile processing.